## What is a similitude in mathematics

If two similar figures lie in the plane but do not have parallel sides (i.e., they are similar but not homothetic), there exists a center of similitude, also called a self-homologous point, which occupies the same homologous position with respect to the two figures (Johnson 1929, p.

16)..

## How do you find the center of similitude

We know that the internal centre of similitude divides the line joining the centre in the ratio r1:r2 internally. So, we get the centre of (x−3)2+(y−2)2=9 is C1(3,2) and radius of (x−3)2+(y−2)2=9 is equal to 3.

## What is Centre of similitude of two circles

When the circles do not intersect and lie outside each other, they have two centers of similitude. … One is found at the intersection of the common external tangents of the two circles, the other at the intersection of their internal common tangents.

## What is direct common tangent

The adjective direct means the following: for a direct common tangent, the two circles will lie on the same side of the common tangent. … They divide the line segment joining the centers of the two circles in a specific ratio.

## What is meant by Centre of similitude

In geometry, a homothetic center (also called a center of similarity or a center of similitude) is a point from which at least two geometrically similar figures can be seen as a dilation or contraction of one another.

## How can you tell if triangles are similar

If two pairs of corresponding angles in a pair of triangles are congruent, then the triangles are similar. We know this because if two angle pairs are the same, then the third pair must also be equal. When the three angle pairs are all equal, the three pairs of sides must also be in proportion.

## What are eccentric circles

(An eccentric circle is a circle that is slightly off-centre from Earth, and an epicycle is a circle that is carried and rides around on another circle.) This innovation is usually attributed to Apollonius of Perga (c.

## What do all circles have in common

All circles are similar to each other. All points on the circumference of any circle are equi-distant from its center. Because the size of any circle is defined by its radius, we use the radii to determine its scale factor.

## What does concentric mean in math

In geometry, two or more objects are said to be concentric, coaxal, or coaxial when they share the same center or axis. Circles, regular polygons and regular polyhedra, and spheres may be concentric to one another (sharing the same center point), as may cylinders (sharing the same central axis).

## Can a circle have two Centres

While on spheres, circles have two centers, we can have Riemannian spaces in which geodesics refocus any number of times, even infinitely often, in which cases a circle could have any number of centers, even infinitely many of them.

## What are circles with the same center called

Concentric circles are circles with a common center. The region between two concentric circles of different radii is called an annulus.

## What is the symbol for similarity

symbol ∼The triangles are congruent if, in addition to this, their corresponding sides are of equal length. This common ratio is called the scale factor . The symbol ∼ is used to indicate similarity.

## How do you find the chord length of a contact

Chord length = 2√r2-d2 , where r is the radius of the circle and d is the perpendicular distance of the center of the circle to the chord.

## What is a segment with endpoints at the center and on the circle

A radius is a line segment with one endpoint at the center of the circle and the other endpoint on the circle. … A diameter is a chord that passes through the center of the circle. A secant is a line that intersects with a circle at 2 different points.

## Is 180 a major arc

An arc whose measure is greater than 180 degrees is called a major arc. An arc whose measure equals 180 degrees is called a semicircle, since it divides the circle in two. … A central angle is an angle whose vertex is the center of a circle.